Interactive sales analysis dashboard built with Python, Plotly, and Dash.
Includes KPIs, filters, and dynamic visualizations.
π¬ Dashboard Demo
This project is a complete end-to-end Sales Analysis and Interactive Dashboard built with
Python, Pandas, Plotly, and Dash, using the Sample Superstore dataset (2014β2017).
It includes:
- Data cleaning and preprocessing
- Exploratory data analysis (EDA)
- Visualizations in Seaborn and Plotly
- Interactive dashboard with live KPIs
- Source: Superstore Dataset (Kaggle)
sales_analysis_dashboard/ ββ dash/ β ββ app.py ββ data/ β ββ Sample - Superstore.csv ββ notebooks/ β ββ sales_analysis.ipynb ββ plots/ β ββ sales_by_category_plotly.png β ββ sales_by_category_seaborn.png β ββ sales_by_region_plotly.png β ββ sales_by_region_seaborn.png β ββ monthly_sales_trend_plotly.png β ββ monthly_sales_trend_seaborn.png β ββ profit_vs_discount_plotly.png β ββ profit_vs_discount_seaborn.png β ββ top_10_cities_by_sales_plotly.png β ββ top_10_cities_by_sales_seaborn.png ββ dashboard/ β ββ supersales_dashboard_static.png β ββ supersales_dashboard_static_light.png β ββ superstore_sales_dashboard.gif ββ requirements.txt ββ .gitignore ββ README.md
pip install -r requirements.txt
jupyter notebook notebooks/sales_analysis.ipynb
βΆοΈ Run the Dashboard Locally
python dash/app.py
Then open your browser and go to
π http://127.0.0.1:8050π Dashboard KPIs
| KPI | Value |
|---|---|
| π° Total Sales | $2,297,201 |
| π΅ Total Profit | $286,397 |
| π Profit Margin | 12.5% |
| π¦ Orders | 9,994 |
| πΈ Average Discount | 15.6% |
π‘ Key Insights
Technology category has the highest profit margin (~17.4%). Furniture performs the worst (~2.5% margin). West region drives the most profit (~14.9%). Discounts show a strong negative correlation with profit. Sales trend increases steadily through 2017, with Q4 peaks.
π¨ Dashboard Features
β¨ Modern dark theme with teal-accented palette π¦ Dynamic KPIs cards for instant overview ποΈ Filters for Category, Region, and Month Range π Interactive Plotly charts (hover, zoom, filter) π Real-time recalculation of metrics and visuals π Exported static charts with Seaborn and Plotly
π§ Tech Stack
| Area | Tools |
|---|---|
| Data Handling | pandas, numpy |
| Visualization | plotly, dash, seaborn, matplotlib |
| Notebook | jupyter, pyarrow |
| Dashboard | Dash Core Components, Dash HTML Components |
| Theme | Custom dark + teal palette |
πΈ Visuals
| Library | Example |
|---|---|
| Plotly | Interactive visuals (used in Dash app) |
| Seaborn | Static comparisons and EDA |
| Matplotlib | Trend validation & complementary plots |
π§© Next Steps
β Forecasting models (Prophet / ARIMA) β Customer segmentation analysis β Dynamic filters by state and product type β Deployment to cloud (Render / AWS / Hugging Face Spaces)
π οΈ Installation Requirements
Dependencies listed in requirements.txt: pandas>=2.0 numpy>=1.24 plotly>=5.20 dash>=2.14 seaborn>=0.13 matplotlib>=3.8 pyarrow>=15.0
π§βπ» Author
MΓ³nica Venzor π Data Analyst Jr | SQL | Excel | Power BI | Python | Data Visualization | Machine Learning Enthusiast πLinkedIn | β GitHub
π License
This project is licensed under the MIT License β free for educational and personal use.







