Skip to content

πŸ“Š Interactive Sales Dashboard built with Python, Plotly & Dash β€” includes KPIs, filters, and EDA in Jupyter.

Notifications You must be signed in to change notification settings

MonicaVenzor/sales_analysis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

30 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸ›οΈ Superstore Sales Dashboard β€” Python, Plotly & Dash

Python Plotly Seaborn License: MIT

Interactive sales analysis dashboard built with Python, Plotly, and Dash.
Includes KPIs, filters, and dynamic visualizations.

Dashboard Dark theme Dashboard dark

Dashboard light theme Dashboard dark

🎬 Dashboard Demo

Superstore Dashboard demo animation


πŸ“– Project Overview

This project is a complete end-to-end Sales Analysis and Interactive Dashboard built with
Python, Pandas, Plotly, and Dash, using the Sample Superstore dataset (2014–2017).

It includes:

  • Data cleaning and preprocessing
  • Exploratory data analysis (EDA)
  • Visualizations in Seaborn and Plotly
  • Interactive dashboard with live KPIs


πŸ“‚ Project Structure

sales_analysis_dashboard/ β”œβ”€ dash/ β”‚ └─ app.py β”œβ”€ data/ β”‚ └─ Sample - Superstore.csv β”œβ”€ notebooks/ β”‚ └─ sales_analysis.ipynb β”œβ”€ plots/ β”‚ β”œβ”€ sales_by_category_plotly.png β”‚ β”œβ”€ sales_by_category_seaborn.png β”‚ β”œβ”€ sales_by_region_plotly.png β”‚ β”œβ”€ sales_by_region_seaborn.png β”‚ β”œβ”€ monthly_sales_trend_plotly.png β”‚ β”œβ”€ monthly_sales_trend_seaborn.png β”‚ β”œβ”€ profit_vs_discount_plotly.png β”‚ β”œβ”€ profit_vs_discount_seaborn.png β”‚ β”œβ”€ top_10_cities_by_sales_plotly.png β”‚ └─ top_10_cities_by_sales_seaborn.png β”œβ”€ dashboard/ β”‚ β”œβ”€ supersales_dashboard_static.png β”‚ β”œβ”€ supersales_dashboard_static_light.png β”‚ └─ superstore_sales_dashboard.gif β”œβ”€ requirements.txt β”œβ”€ .gitignore └─ README.md


πŸš€ Quick Start

▢️ Run the Notebook

pip install -r requirements.txt
jupyter notebook notebooks/sales_analysis.ipynb
▢️ Run the Dashboard Locally
python dash/app.py
Then open your browser and go to
πŸ‘‰ http://127.0.0.1:8050

πŸ“Š Dashboard KPIs

KPI Value
πŸ’° Total Sales $2,297,201
πŸ’΅ Total Profit $286,397
πŸ“ˆ Profit Margin 12.5%
πŸ“¦ Orders 9,994
πŸ’Έ Average Discount 15.6%

πŸ’‘ Key Insights

Technology category has the highest profit margin (~17.4%). Furniture performs the worst (~2.5% margin). West region drives the most profit (~14.9%). Discounts show a strong negative correlation with profit. Sales trend increases steadily through 2017, with Q4 peaks.


🎨 Dashboard Features

✨ Modern dark theme with teal-accented palette πŸ“¦ Dynamic KPIs cards for instant overview 🎚️ Filters for Category, Region, and Month Range πŸ“Š Interactive Plotly charts (hover, zoom, filter) πŸ“ˆ Real-time recalculation of metrics and visuals πŸ“ Exported static charts with Seaborn and Plotly


🧠 Tech Stack

Area Tools
Data Handling pandas, numpy
Visualization plotly, dash, seaborn, matplotlib
Notebook jupyter, pyarrow
Dashboard Dash Core Components, Dash HTML Components
Theme Custom dark + teal palette

πŸ“Έ Visuals

Library Example
Plotly Interactive visuals (used in Dash app)
Seaborn Static comparisons and EDA
Matplotlib Trend validation & complementary plots


🧩 Next Steps

βœ… Forecasting models (Prophet / ARIMA) βœ… Customer segmentation analysis βœ… Dynamic filters by state and product type βœ… Deployment to cloud (Render / AWS / Hugging Face Spaces)

πŸ› οΈ Installation Requirements

Dependencies listed in requirements.txt: pandas>=2.0 numpy>=1.24 plotly>=5.20 dash>=2.14 seaborn>=0.13 matplotlib>=3.8 pyarrow>=15.0


πŸ§‘β€πŸ’» Author

MΓ³nica Venzor πŸ“ Data Analyst Jr | SQL | Excel | Power BI | Python | Data Visualization | Machine Learning Enthusiast πŸ”—LinkedIn | β€” GitHub

πŸ“œ License

This project is licensed under the MIT License β€” free for educational and personal use.


⭐ If you found this project useful or inspiring, please give it a star! It helps others discover it and supports more open projects like this πŸ’«

About

πŸ“Š Interactive Sales Dashboard built with Python, Plotly & Dash β€” includes KPIs, filters, and EDA in Jupyter.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published