Interoperability Enabler (IE) component is designed to facilitate seamless integration and interaction among various artefacts within the SEDIMARK ecosystem, including data, AI models, and service offerings.
- Data Formatter - Convert JSON data (time-series data) into the SEDIMARK internal processing format (pandas DataFrames)
- Data Mapper – Convert data from pandas DataFrames into JSON
- Data Extractor – Extract relevant data from a pandas DataFrame
- Metadata Restorer – Restore metadata to a pandas DataFrame
- Data Merger – Merge two DataFrames by matching column names
The source code can be found on GitHub at https://github.com/Sedimark/InteroperabilityEnabler.
Binary installer for the latest released version is available on PyPI at https://pypi.org/project/InteroperabilityEnabler/
To install the package, you can use pip:
pip install InteroperabilityEnablerInteroperabilityEnabler
├── .github
│ └── workflows
│ ├── python-publish.yml
│ └── test.yml
├── InteroperabilityEnabler
│ ├── __init__.py
│ └── utils
│ ├── __init__.py
│ ├── add_metadata.py
│ ├── data_formatter.py
│ ├── data_mapper.py
│ ├── extract_data.py
│ └── merge_data.py
├── MANIFEST.in
├── README.md
├── README_package.md
├── script.py
├── setup.py
└── tests
├── __init__.py
├── example_json.json
└── test_basic.py
from InteroperabilityEnabler.utils.data_formatter import data_formatter
FILE_PATH="sample.json"
context_df, time_series_df = data_formatter(FILE_PATH)from InteroperabilityEnabler.utils.data_mapper import data_mapper
data_json = data_mapper(context_df, time_series_df)from InteroperabilityEnabler.utils.extract_data import extract_columns
# Select columns by index
column_indices = [2, 5]
selected_df, selected_column_names = extract_columns(time_series_df, column_indices)
print("\nSelected DataFrame:")
print(selected_df)
print("\nSelected Column Names:")
print(selected_column_names)import pandas as pd
from InteroperabilityEnabler.utils.add_metadata import add_metadata_to_predictions_from_dataframe
PREDICTED_DATA = "predicted_data.csv" # example - prediction results from an AI model
predicted_df = pd.read_csv(PREDICTED_DATA, header=None)
predicted_df = add_metadata_to_predictions_from_dataframe(
predicted_df, selected_column_names
)from InteroperabilityEnabler.utils.merge_data import merge_predicted_data
# To combine the original input data with the corresponding prediction results from an AI model
merged_df = merge_predicted_data(time_series_df, predicted_df)This software has been developed by Inria under the SEDIMARK(SEcure Decentralised Intelligent Data MARKetplace) project. SEDIMARK is funded by the European Union under the Horizon Europe framework programme [grant no. 101070074].