Skip to content

WIAP is a full-stack data engineering + analytics + warehouse operations intelligence platform designed to simulate and analyze real FMCG/3PL warehouse environments, using Python, psycopg2, SQLAlchemy, VSCode, PostgreSQL/ SQL, DBeaver, Power BI.,

License

Notifications You must be signed in to change notification settings

ThilinaPerera-DataAnalytics/Data_Analytics_Projects_WIAP_Warehouse_Intelligence_-_Analytics_Pipeline

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

7 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

🏭 Warehouse Intelligence & Analytics Platform (WIAP)

This project mirrors a real enterprise warehouse data platform and showcases depth across,

* Data Engineering/ Data analytics (DE/DA)
* Data Modeling & Power BI Development
* Operational KPI/ SLA Frameworks
* End-to-end FMCG, Warehouse, Logistics and QC Domain Knowledge 

cover image

πŸ“Š Interact with the Online Dashboard
🎦 Watch the Youtube Video

WIAP is a full-stack data engineering + analytics + warehouse operations intelligence platform designed to simulate and analyze real FMCG/3PL warehouse environments.

This project is basically a warehouse digital twin:

  • Generates complex synthetic operational data (Inbound, Outbound, Inventory, Transport, Quality, HR).
  • Loads everything into a PostgreSQL warehouse with a fully normalized schema.
  • Creates views powered by heavy SQL, data cleaning, imputations, and logic transformations.
  • Builds an analytic semantic layer in Power BI with M-ETL pipelines and optimized schemas.
  • Delivers 70+ operational KPIs used in real warehouse management.

Everything mirrors real industry workflow learned from 9+ years working in food FMCG QA, warehousing, and logistics.


πŸ“‹ Project Planning & Scoping

Goals

  • Build a realistic, scalable warehouse data ecosystem.
  • Showcase analytics engineering + data engineering workflow end-to-end.
  • Create a modular platform that supports future ML and forecasting.
  • Demonstrate strong BI concepts: modeling, KPI governance, DAX standards.
  • Highlight my operational intelligence from QA + FMCG + logistics.

Objectives

  • Design enterprise-grade schema (normalized + views).
  • Create multi-domain synthetic data with natural randomness.
  • Build reproducible ETL logic.
  • Develop BI dashboards that mimic real 3PL/WH KPIs/ SLAs.
  • Create documented KPI dictionary for governance.

♻️ Basic Warehouse Operation Flow

WH operation
End-to-end WH operation


πŸ—‚οΈ GitHub Projects Board

A Kanban board is included to track:

  • Data generation tasks
  • Schema iterations
  • Loader fixes
  • View redesigns
  • Power BI modeling
  • KPI validation
  • Future roadmap (Phase II Ops)

GitHub Projects
Progress tracking with GitHub Projects - Kanban board


πŸ› οΈ Tech Stack

Data Engineering & Analytics Stack

Category Tools
Python & Data Generation Python Pandas Random OS DateTime Logging Time IDE
LLM Integration Ollama Mistral
Database Connectivity Psycopg2 SQLAlchemy
SQL Database Management PostgreSQL DBeaver

BI & Analytics Engineering

Category Tools
Power Platform & Visualization Power BI

Development & Workflow

Category Tools
Version Control, Project Tracking & Documentation Git GitHub and GitHub Projects MD

AI & Productivity Tools

Category Tools
AI Assistance & Creative Tools AI UI Project Walk-throughGemini nano banana draw.io

πŸ“‚ Project Folder

Data_Analytics_Projects_Warehouse_Process_Analysis_Pipeline/
β”œβ”€β”€ data/
β”‚   └── raw/                           # Raw data generated (Python Libraries + LLM)
β”‚    
β”œβ”€β”€ src/                               # Production-ready Python codes
β”‚   β”œβ”€β”€ data_generator.py              # LLM functions and DataFrame creation logic
β”‚   └── data_loader.py                 # Logic for loading data from CSVs into the PostgreSQL database.
|
β”œβ”€β”€ sql/                               # PSQL scripts
β”‚   └── schema.sql                     # CREATE TABLE statements for the database schema
|
β”œβ”€β”€ KPI_docs/                          # Extensions to the main README.md to expand KPIs
β”‚   β”œβ”€β”€ KPI_COO.md                     # KPIs in COO's view
β”‚   β”œβ”€β”€ KPI_Inbound.md                 # KPIs in Inbounds & Returns Page
β”‚   └── KPI_Outbound.md                # KPIs in Outbounds Page
β”‚
β”œβ”€β”€ reports/                           # Final reports and visualizations
β”‚   β”œβ”€β”€ project_doc.docx.py            # Project Report 
β”‚   β”œβ”€β”€ project_video.mp4              # Dashboard/ Report walkthrough
β”‚   └── Operations_Dashboard_P01.pbix  # Data cleaning, data modeling, data analysis, visualization and publish
β”‚
β”œβ”€β”€ images/                            # All relevant image files
|
β”œβ”€β”€ LICENSE.md                         # MIT License
β”œβ”€β”€ .gitignore                         # Files and folders to ignore in Git.
└── README.md                          # Project documentation

🧰 Data Pipeline - from mind to matrix

Data Pipeline
🧠 Idea β†’ 🎨 Design β†’ πŸ” ETL β†’ πŸ“Š Analyze β†’ πŸŽ›οΈ Dashboard β†’ πŸ“ˆ Results

πŸ—οΈ Data Architecture

Python + VS Code - data_generator.py

  • Python-generated synthetic datasets
  • SQL-first normalized schema (PK/FK, indexes)
  • Data cleaning via SQL views
  • ETL pipeline using SQLAlchemy
  • Power BI data modeling & measure tables
  • Department-wise KPI models

🧱 Schema Design

PostgreSQL + VS Code - schema.sql

  • 4 standalone dimension tables
  • 10 dependent operational tables
  • 2 monitoring/incident tables
  • 16 analytics-ready views
  • Full PK/FK relationships
  • Indexes for query performance

The schema follows a Raw β†’ Clean Views β†’ PBI ETL β†’ BI Model architecture.


πŸ”„ ETL & Loading

Python + VS Code - data_loader.py

  • FK-safe load sequence
  • UPSERT logic (ON CONFLICT)
  • Automated logging
  • Idempotent reruns

🧹 View Layer (Advanced SQL)

PostgreSQL + DBeaver - views.sql

  • LLM hallucination corrections
  • Missing value imputation
  • NaN β†’ TRUE logic conversions
  • Dimensional transformations
  • Standardized naming conventions
  • RegEx cleanup
  • Time-casting, type standardization
  • Derived KPIs (cycle times, severities, statuses)
  • Normalization of messy logs

πŸ”§ ETL in Power BI

Power Query Editor:

  • Data profiling
  • Quality checks
  • Column-level lineage
  • Conditional transformations
  • Metadata management
  • Governance patterns
  • Versioned query groups
  • Staging β†’ Clean β†’ Fact β†’ Dim layering

πŸ“Š Data Modeling (Power BI)

Model highlights:

  • Complex-schema with clean relationship directions
  • Row-level granularity by operation
  • Model optimization:
    • Field parameter grouping
    • Surrogate keys
    • Removing high-cardinality clutter
    • Merged fact tables
  • Department-wise measure tables
  • KPI folders for governance

Data Model
Data model


πŸ“ˆ Analytics Delivered (Phase I)

Each KPI includes:

  1. Business Question
  2. Formula
  3. Importance
  4. Operational Meaning (High vs Low)
  5. How to Improve

πŸ“™ COO's Dashboard (section wise) - COO's KPI Dictionary πŸ”

βœ” Revenue, Profit, CBM flows
βœ” Workforce demographics
βœ” Warehouse utilization
βœ” All operational KPIs summarized

COO's view
COO's UI

πŸ“— Inbound/ Retunrs KPIs - Inbound/ Returns KPI Dictionary πŸ”

βœ” Labour efficiency
βœ” Shift productivity (Inbound, Returns)
βœ” Operational Cycle times (Picking, Loading, Return handling)
βœ” On-time put-away %
βœ” Rejection % analyses
βœ” Supplier performance
βœ” Return behaviors
βœ” Incident reporting

Inbounds
Inbounds UI

Returns
Returns UI

πŸ“˜ Outbound KPIs - Outbound KPI Dictionary πŸ”

βœ” Labour efficiency
βœ” Shift productivity
βœ” Order fulfillment %
βœ” Operational cycle time
βœ” WH Throughput (Cartons, CBM, Pallet)
βœ” Failed-pick product analysis
βœ” Lost GP due to failed-picks
βœ” Vehicle utilization
βœ” On-Time-Dispatch (OTD) %

Outbound
Outbounds UI


🧭 Roadmap (Phase II)

  • Inventory Control analytics
  • Quality Control analytics
  • Transport/ Logistics analytics

🧭 Future Enhancements

  • Integrate Sales data model to perform a financial analysis
  • Predictive analysis with Machine Learnig models

πŸ‘· How to Run WIAP

πŸ“˜ Shall we explore how to run the WIAP πŸ” ..?
# 1. Clone the repo
git clone https://github.com/<your-username>/wiap.git
cd wiap

# 2. Install dependencies
pip install -r requirements.txt

# 3. Start PostgreSQL (Docker)
docker-compose up -d

# 4. Generate synthetic datasets
python data_generation/data_generator.py

# 5. Load data into the DW
python etl/data_loader.py

# 6. Open Power BI Desktop and proceed with your own analysis and visualization
.pbix file is not inluded

πŸ“ Commit Message Convention

πŸ“˜ Want to commit πŸ” ..?
feat: added supplier rejection logic  
fix: corrected on-time putaway calculation  
docs: updated KPI dictionary  
refactor: optimized SQL view joins  
test: added loader unit tests  
chore: updated requirements.txt  

πŸ”§ How to Contribute

πŸ“˜ Want to explore how you can contribute πŸ” ..?
1. Fork the repo
2. Create a feature branch
3. Follow commit conventions
4. Ensure tests pass
5. Submit PR with:
  * What changed
  * Why it was needed
  * Any dependencies
  * Screenshots (if Power BI)

πŸ§ͺ Testing Strategy

πŸ“˜ Would you like test it πŸ” ..?

βœ” Data Gen Tests

  • Column issues
  • Null handling
  • Pattern consistency
  • Business rule checks

βœ” ETL Tests

  • PK/FK constraints
  • UPSERT validation
  • Row counts
  • Error handling

βœ” SQL View Tests

  • Data cleaning logic
  • COALESCE strategy
  • Cycle time calculations
  • SLA logic correctness

🏁 Final Thoughts

WIAP isn’t a toy project. It’s a full-fledged warehouse intelligence platform demonstrating,

  • Data engineering abilities
  • Analytics engineering discipline
  • Business logic modeling
  • Dashboard design
  • KPI governance
  • Operational domain knowledge

πŸ™ Acknowledgments & Gratitude

My sincere thanks to the communities and resources that supported this learning journey:

  • eLearning.lk: I was fortunate to find this online edu. platform at the start of my learning path. Special thanks to Mr. Sanjaya Elvitigala, the platform owner, and Mr. Asanka Senarath, my first Power BI mentor.
  • YouTube Communities: For exploring best practices in KPI representation and drawing inspiration for user interface design.
  • AI Assistants (Grok, ChatGPT, DeepSeek): For researching concepts, validating ideas, developing KPI/SLA frameworks, and assisting with debugging and code optimization.

πŸ‘¨β€πŸ’» Author

Thilina Perera | Data with TP

πŸ“Œ Data Science/ Data Analytics D-Technosavant
πŸ“Œ Machine Learning, Deep Learning, LLM/LMM, NLP, and Automated Data Pipelines Inquisitive

LinkedIn TikTok YouTube email

πŸ† License

This project is licensed under the MIT License.
Free to use and extend.

About

WIAP is a full-stack data engineering + analytics + warehouse operations intelligence platform designed to simulate and analyze real FMCG/3PL warehouse environments, using Python, psycopg2, SQLAlchemy, VSCode, PostgreSQL/ SQL, DBeaver, Power BI.,

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages