Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
102 changes: 102 additions & 0 deletions python/pyarrow/_compute_docstrings.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,3 +54,105 @@
>>> modes[1]
<pyarrow.StructScalar: [('mode', 1), ('count', 2)]>
"""

function_doc_additions["min"] = """
Examples
--------
>>> import pyarrow as pa
>>> import pyarrow.compute as pc
>>> arr1 = pa.array([1, 1, 2, 2, 3, 2, 2, 2])
>>> pc.min(arr1)
<pyarrow.Int64Scalar: 1>

Using ``skip_nulls`` to handle null values.

>>> arr2 = pa.array([1.0, None, 2.0, 3.0])
>>> pc.min(arr2)
<pyarrow.DoubleScalar: 1.0>
>>> pc.min(arr2, skip_nulls=False)
<pyarrow.DoubleScalar: None>

Using ``ScalarAggregateOptions`` to control minimum number of non-null values.

>>> arr3 = pa.array([1.0, None, float("nan"), 3.0])
>>> pc.min(arr3)
<pyarrow.DoubleScalar: 1.0>
>>> pc.min(arr3, options=pc.ScalarAggregateOptions(min_count=3))
<pyarrow.DoubleScalar: 1.0>
>>> pc.min(arr3, options=pc.ScalarAggregateOptions(min_count=4))
<pyarrow.DoubleScalar: None>

This function also works with string values.

>>> arr4 = pa.array(["z", None, "y", "x"])
>>> pc.min(arr4)
<pyarrow.StringScalar: 'x'>
"""

function_doc_additions["max"] = """
Examples
--------
>>> import pyarrow as pa
>>> import pyarrow.compute as pc
>>> arr1 = pa.array([1, 1, 2, 2, 3, 2, 2, 2])
>>> pc.max(arr1)
<pyarrow.Int64Scalar: 3>

Using ``skip_nulls`` to handle null values.

>>> arr2 = pa.array([1.0, None, 2.0, 3.0])
>>> pc.max(arr2)
<pyarrow.DoubleScalar: 3.0>
>>> pc.max(arr2, skip_nulls=False)
<pyarrow.DoubleScalar: None>

Using ``ScalarAggregateOptions`` to control minimum number of non-null values.

>>> arr3 = pa.array([1.0, None, float("nan"), 3.0])
>>> pc.max(arr3)
<pyarrow.DoubleScalar: 3.0>
>>> pc.max(arr3, options=pc.ScalarAggregateOptions(min_count=3))
<pyarrow.DoubleScalar: 3.0>
>>> pc.max(arr3, options=pc.ScalarAggregateOptions(min_count=4))
<pyarrow.DoubleScalar: None>

This function also works with string values.

>>> arr4 = pa.array(["z", None, "y", "x"])
>>> pc.max(arr4)
<pyarrow.StringScalar: 'z'>
"""

function_doc_additions["min_max"] = """
Examples
--------
>>> import pyarrow as pa
>>> import pyarrow.compute as pc
>>> arr1 = pa.array([1, 1, 2, 2, 3, 2, 2, 2])
>>> pc.min_max(arr1)
<pyarrow.StructScalar: [('min', 1), ('max', 3)]>

Using ``skip_nulls`` to handle null values.

>>> arr2 = pa.array([1.0, None, 2.0, 3.0])
>>> pc.min_max(arr2)
<pyarrow.StructScalar: [('min', 1.0), ('max', 3.0)]>
>>> pc.min_max(arr2, skip_nulls=False)
<pyarrow.StructScalar: [('min', None), ('max', None)]>

Using ``ScalarAggregateOptions`` to control minimum number of non-null values.

>>> arr3 = pa.array([1.0, None, float("nan"), 3.0])
>>> pc.min_max(arr3)
<pyarrow.StructScalar: [('min', 1.0), ('max', 3.0)]>
>>> pc.min_max(arr3, options=pc.ScalarAggregateOptions(min_count=3))
<pyarrow.StructScalar: [('min', 1.0), ('max', 3.0)]>
>>> pc.min_max(arr3, options=pc.ScalarAggregateOptions(min_count=4))
<pyarrow.StructScalar: [('min', None), ('max', None)]>

This function also works with string values.

>>> arr4 = pa.array(["z", None, "y", "x"])
>>> pc.min_max(arr4)
<pyarrow.StructScalar: [('min', 'x'), ('max', 'z')]>
"""
32 changes: 32 additions & 0 deletions python/pyarrow/tests/test_compute.py
Original file line number Diff line number Diff line change
Expand Up @@ -883,6 +883,38 @@ def test_generated_docstrings():
Alternative way of passing options.
memory_pool : pyarrow.MemoryPool, optional
If not passed, will allocate memory from the default memory pool.

Examples
--------
>>> import pyarrow as pa
>>> import pyarrow.compute as pc
>>> arr1 = pa.array([1, 1, 2, 2, 3, 2, 2, 2])
>>> pc.min_max(arr1)
<pyarrow.StructScalar: [('min', 1), ('max', 3)]>

Using ``skip_nulls`` to handle null values.

>>> arr2 = pa.array([1.0, None, 2.0, 3.0])
>>> pc.min_max(arr2)
<pyarrow.StructScalar: [('min', 1.0), ('max', 3.0)]>
>>> pc.min_max(arr2, skip_nulls=False)
<pyarrow.StructScalar: [('min', None), ('max', None)]>

Using ``ScalarAggregateOptions`` to control minimum number of non-null values.

>>> arr3 = pa.array([1.0, None, float("nan"), 3.0])
>>> pc.min_max(arr3)
<pyarrow.StructScalar: [('min', 1.0), ('max', 3.0)]>
>>> pc.min_max(arr3, options=pc.ScalarAggregateOptions(min_count=3))
<pyarrow.StructScalar: [('min', 1.0), ('max', 3.0)]>
>>> pc.min_max(arr3, options=pc.ScalarAggregateOptions(min_count=4))
<pyarrow.StructScalar: [('min', None), ('max', None)]>

This function also works with string values.

>>> arr4 = pa.array(["z", None, "y", "x"])
>>> pc.min_max(arr4)
<pyarrow.StructScalar: [('min', 'x'), ('max', 'z')]>
""")
# Without options
assert pc.add.__doc__ == textwrap.dedent("""\
Expand Down
Loading