Efficient Global Attention Network via Multi-Granularity Dynamic Convolution for Lightweight Image Super-Resolution
Qian Wang, Jing Wei, Mengyang Wang, Yao Tang, Han Pan
pip install -r requirements.txtThe trainset uses the DIV2K (800). In order to effectively improve the training speed, images are cropped to 480 * 480 images by running script extract_subimages.py, and the dataloader will further randomly crop the images to the GT_size required for training. GT_size defaults to 128/192/256 (×2/×3/×4).
python extract_subimages.pyThe input and output paths of cropped pictures can be modify in this script. Default location: ./datasets/DIV2K.
### Train ###
### EGANet ###
python train.py -opt ./options/train/EGANet/train_eganet_x4.yml --auto_resume # ×4For more training commands, please check the docs in BasicSR
### Test ###
### EGANet for Lightweight Image Super-Resolution ###
python basicsr/test.py -opt ./options/test/EGANet/test_eganet_x4.yml # ×4
### EGANet for Large Image Super-Resolution ###
### Flicker2K Test2K Test4K Test8K ###
python basicsr/test.py -opt ./options/test/EGANet/test_eganet_large.yml # large imageStay tuned.
If you have any questions, please feel free to contact us [email protected] and [email protected].

