Student @ Tsinghua (IIIS). Working on trapped-ion quantum computing, quantum information & AI4Science. I explore hybrid quantum–classical workflows: error mitigation, variational circuits, multi‑modal scientific data, differentiable quantum models. Long-term goal: scalable quantum + ML toolchains that accelerate scientific discovery.
Python · Rust · Qiskit · PennyLane · PyTorch · Docker · Linux
Minimal + reproducible. Critical paths → Rust FFI; prototyping → Python ML/quantum libs.
| Domain | What I'm Exploring |
|---|---|
| Quantum Error Mitigation | Zero-noise extrapolation, probabilistic error cancellation |
| Variational Algorithms | VQE, QAOA, hardware-efficient ansätze |
| Hybrid ML | Parameter-shift gradients, differentiable quantum circuits |
| AI4Science | Surrogate modeling for physical simulations |
| Optimization | Quantum-inspired heuristics & classical acceleration |
Structured private notes (to be opened): quantum channels, noise models, expressibility vs trainability, hybrid optimization heuristics.
| Project | Stack | Goal |
|---|---|---|
| Quantum Kernel Playground | Python + Qiskit + PennyLane | Comparative benchmarking of quantum kernels |
| Variational Ansatz Explorer | JAX + PennyLane | Auto-search ansätze and evaluate expressibility |
| Hybrid Optimizer Pack | Rust + Python FFI | Fast classical post-processing for VQE/QAOA |
| Scientific Data Fusion | PyTorch + Transformers | Multi-modal integration (spectra + structure) |
Repos will be pinned as they become public.
Snake contribution animation (optional): 
Email: [email protected] · Open to research collab & rapid prototyping. Want to chat about quantum × ML ideas? Ping me.
Open-source: shields.io, readme-typing-svg, lowlighter/metrics, anuraghazra/github-readme-stats, Platane/snk.
- Quantum ML benchmarking repo
- Parameter-shift gradient tutorial
- Automated paper summarizer workflow
- Rust simulation kernels
- Hybrid workflow templates
- Reproducible benchmark datasets
- Activity auto-update action
- 🔨 Push: xiaoshecode/xiaoshecode — push
- 🔨 Push: xiaoshecode/xiaoshecode — push
- 🔨 Push: xiaoshecode/xiaoshecode — push
- 🔨 Push: xiaoshecode/xiaoshecode — push
- 🔨 Push: xiaoshecode/xiaoshecode — push
Thanks for visiting — star anything that resonates ⭐